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A Numerical Observation on the Self-Oscillating
Tunnel-Diode Mixer

CANAN TOKER

Abstract—The anomalous behavior previously observed in a self-
oscillating tunnel-diode mixer has been analyzed numerically. The
theoretical results obtained explain the phenomena of the cor-
responding conversion loss becoming infinite when the oscillation
magnitude of a self-oscillating tunnel-diode mixer is maximum.

INTRODUCTION

In an experimental self-oscillating tunnel-diode mixer [1], it was
reported that the conversion loss became infinite when the magnitude
of the self-oscillations was maximum. This pronounced dependency
of the gain on the oscillation magnitude was left unexplained. In this
short paper the analytical gain expression of a self-oscillating tunnel-
diode mixer is used to explain the effect. A simple polynomial repre-
sentation of the nonlinear tunnel-diode conductance is employed and
from this expression the magnitude of the oscillations is evaluated.
High-frequency inductive and capacitive effects have been neglected.
It is found that the maximum magnitude of the oscillations corre-
sponds to a zero value for the first Fourier coefficient of the time-
dependent negative conductance, and as a consequence, zero gain or
infinite loss results.

ANALYSIS

A simple but accurate representation of the tunnel-diode con-
ductance curve is given by [2]

dr 256(V — V) (V — Vo)®
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where Guax is a positive quantity indicating the maximum value of
the negative conductance, V is the voltage across the diode, and V),
and V, are the voltages corresponding to the peak and valley currents
of the tunnel-diode, respectively. By appropriate choice of V,, (1)
can be made to fit the actual conductance curve of the tunnel diode
over the used region of the characteristics. Fig. 1 shows a comparison
of the actual conductance curve of the tunnel diode MA 4605 B and
that of (1).

When the tunnel diode oscillates, the voltage across it, assuming
to be sinusoidal, is given by

V="Ve+ Yz—o (gient 4 e—ieot) 2)

where Vg is the bias voltage, Vj is the peak voltage of the fundamen-
tal frequency of oscillation, and we is the angular oscillation fre-
quency. Following Scanlan [3], V4 is found as

112
Vet = (Ve — Vi)t I:Sx(l — ) + (28x4 — 2843 -+ 942 — ?TZE) :I 3

where x=(Vo—Vg)/(Vo—V,) and §=G;/Gmax. Gy is the load con-
ductance presented to the tunnel diode at the oscillation frequency
and is approximately the same as that at signal frequency for the
self-oscillating tunnel-diode mixer.

For small signals the time-dependent linearized tunnel-diode
conductance can be expanded by Fourier series as

G = Go+ il G(gimeet + gminuot), @

After substituting (3) and (2) into (1), the coefficients of the resultant
expression are equated to the coefficients of (4). This procedure gives
the Fourier coefficients required by the conversion gain expression.
For a short-circuited image tunnel-diode mixer the resonant con-
version gain is given by
4G02’Y12GLGU

4= [Getvi? — (GL + Go) (G, + Go)]? ®
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Fig. 1. Measured and computed conductances for the Microwave
Assoclates germanium diode MA4605B.
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Fig. 2. Variation of the first Fourier coefficient of (4) and the oscillation power of

(6), with the applied bias Vg-G,; =0.012 mho, diode: MA4605B.
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Fig. 3. Theoretical conversion gain curves for different
values of GL-Gy =0.012 mho, diode: MA4605B,
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where v1=G;/Go and G, and G, are defined by (4). G is the load
conductance at the intermediate frequency.

A numerical analysis is carried out to obtain vi? and Go and the
variation of 4,? is plotted as a function of applied bias voltage Va,
as shown in Fig. 2. In the same figure the oscillation power P dissi-
pated in G; and obtained from

'V 2
=G, ©
is also shown for comparison purposes. As seen from Fig, 2 the maxi-
mum value of P corresponds to the zero value of ~,2. At this bias
voltage, the gain expression of (5) becomes zero which means infinite
conversion loss.

Fig. 3 shows the theoretical conversion gain curves obtained from
(5) for different values of Gz and for a fixed value of G,. There is no
need to vary both Gz and G, since (5) is symmetric in Gz and G,
Varying G, would create extra complications in the analysis since it
effects the oscillation magnitude through (6) and (3). The form of
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these theoretical curves is the same as those obtained from the ex-
perimental self-oscillating tunnel-diode mixer [1].

CoNcLUsIONS

The following points are worthwhile considering:

1) Therelatively small magnitudes of self-oscillations correspond
to large gains. This is in agreement with the results obtained for
externally applied local-oscillator tunnel-diode mixers [4].

2) In a tunnel-diode mixer with external local oscillator, both
the bias voltage and the local oscillator magnitude can be varied
independently, In the case of self-oscillating tunnel-diode mixer, the
choice of bias voltage also fixes the oscillation magnitude and hence
the infinite conversion loss condition becomes an inherent property
of the mixer.

3) By suitable choice of G, the critical dependency of gain on the
bias voltage can be minimized. However, in such an optimization
procedure the noise figure of the mixer should also be considered.
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A New Method for Calculating the Capacitance of a
Circular Disk for Microwave Integrated Circuits

T. ITOH anp R. MITTRA

Abstract—A method for calculating the capacitance of a circular
disk on a dielectric substrate backed by a ground plane is presented.
Hankel transforms and Galerkin’s method are used to derive the
expression for the capacitance. Numerical results are compared with
the experimental data and good agreement is reported.

The increasing use of integrated circuits (IC's) at microwave
frequencies has created a great deal of interest in the theoretical and
experimental studies of microstrip lines and other similar structures.
However, most of these studies are concerned with the properties of
infinitely long transmission lines [1]. In actual microwave IC's,
many finite-sized or lumped elements are employed to realize the
desired functional devices. Hence, the analysis of these finite-sized
elements is also important; however, to date, very little has been re-
ported on the analysis of such elements.

Among the finite elements, a rectangular microstrip was recently
analyzed by Farrar and Adams [2] and Itoh et al. [3]. Another typi-
cal finite element is the circular disk (see Fig. 1) for which reliable
design data are lacking. In the present short paper a new method is
presented for calculating the total capacitance of the circular disk
under the quasi-static approximation. The method is an extension of
the spectral domain technique developed in [3].

The first step is to write Poisson’s equation for the potential ¢ in
the cylindrical coordinate

18

il 9% 1
v or (r ('Tt) +:92? == ;;P(i’)ﬂ(z —d) 1))

in which p is the charge distribution on the disk, and the 8 terms van-
ished because of the circular symmetry. Let us now introduce the
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Fig. 1. Circular disk for the microwave integrated circuit.

Hankel transform of the order zero:
da, 2) = f o(r, ) olar)r dr. @
]

Upon Hankel transforming (1) we obtain
a: ~ 1.
)bl d) = — @i~ D @)
& €0
where )

pe = [ O“p(rm(w)r dr

is the Hankel transform of the charge distribution. The general solu-
tion of (3) which satisfies the boundary condition ¢ (e, 0) =0 and the
radiation condition ¢ (e, + «)=01is

A(a) sinh az, 0<z<d

B(a) exp [—a(z — d)], z > d. 4)

The unknown coefficients 4 (o) and B(e) are determined so that the
interface conditions

3a) = |

E(o‘ad + 0) = a(‘x3d - 0)

9 ~ 0 o 1.
’—d’(‘x:d _I_ 0) - ér““(ﬁ(a, d— 0) = — —p(a)
dz 2 €0
are satisfied. Upon eliminating 4 and B we obtain
G(a)pla) = $ila, d) + ola, d) ®
where
- 1
Gla) =

- eox[1 + & coth ad]

Fila,d) = fo Folar)r dr = 2 Jiea)

Folar, d) = f =°¢(r’ T olar)r dr.

Equation (5) corresponds to the integral equation in the conventional
space-domain formulation where the convolution integral appears in-
stead of the product G found in (5). Note that (5) contains two un-
knowns § and ¢o. However, as will be shown shortly, ¢y is eliminated
in the process of solution.

Galerkin’s method is now applied to (5). As the first step toward
this, f(a) is expanded in terms of the known basis functions g.(«):

-~ N ~
pla) = Edn n(e)

(o) = f o) Tolar)r dr ©

where pa(7), the inverse transforms of §a(c), are chosen so that they
are zero for r >a. Substituting (6) in (5) and taking an inner product
of one of the g, with (5), we have

N
ZKmn n = Gm,

n=1

Kun = | o”zm<a>é<a>"pn<a)a da @®
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