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A Numerical Observation on the Self-Oscillating

Tunnel-Diode Mixer

CANAN TOKER

Absfracf—The anomalous behavior previously observed in a seff-

oscillating tunnel-diode mixer has been analyzed numerically, The
theoretical results obtained explain the phenomena of the cor-

responding conversion loss becoming infinite when the oscillation

magnitude of a self-oscillating tunnel-diode mixer ismazimmn.

INTRODUCTION

Inanexperimental self-oscillating tunnel-diode mixer [l], it was
reported that the conversion loss became infinite when the magnitude
of the self-oscillations was maximum. This pronounced dependency
of thegain ontheoscillation magnitude was left unexplained. In this
short paper the analytical gain expression of a self-oscillating tunnel-

diode mixer is used to explain the effect. A simple polynomial repre-

sentation of the nonlinear tunnel-diode conductance is employed and
from this expression the magnitude of theoscillations is evaluated.

High-frequency inductive and capacitive effects have been neglected.
It is found that the maximum magnitude of the oscillations corre-

sponds to a zero value for the first Fourier coefficient of the time-
dependent negative conductance, andas a consequence, zero gainer
infinite loss results.

ANALYSIS

A simple but accurate representation of the tunnel-diode con-
ductance curve isgivenby [2]

dI 256(V – Vp) (V – V.)’
= G(V) = Gm.

27 27(V. – VP)4
(1)

where G~x is a positive quantity indicating the maximum value of
the negative conductance, l’isthe voltage aeross the diode, and VP

and Voarethe voltages corresponding tothepeak andvaIley currents
of the tunnel-diode, respectively. By appropriate choice of V., (1)
can be made to fit the actual conductance curve of the tunnel diode
over theused region of the characteristics. Fig. 1 shows a comparison
of the actual conductance curve of the tunnel diode MA 4605 B and
that of (l).

When thetunnel diode oscillates, thevoltage across it, assuming
to be sinusoidal, is given by

V= V’~+~(e~”Oi+e-@Ot) (2)

where VEisthe bias voltage, VOisthe peak voltage of the fundamen-
tal frequency of oscillation, and ow is the angular oscillation fre-

quency. Following Scanlan [3], VOis found as

[ (
1/2

VO’= (V. –VP)Z 3z(1–2z)+ 28x4–28#3+9z2–:j )1 (3)

where x=( V. —VB)/(V. —VJ and g?=G~/G~~. G~ is the load con-
ductance presented to the tunnel diode at the oscillation frequency
and is approximately the same as that at signal frequency for the
self-oscillating tunnel-diode mixer.

For small signals the time-dependent linearized tunnel-diode

conductance can be expanded by Fourier series as

G(f) = Go+~G.(e~”-O’ +e-~wO’). (4)
n-l

After substituting (3) and (2) into (1), the coefficients of the resultant
expression areequated tothe coefficients of (4). This procedure gives
the Fourier coefficients required by the conversion gain expression.

For a short-circuited image tunnel-diode mixer the resonant con-

version gain is given by

4GOzYIzGLGa

A = [Go’-y12– (GL + Go) (G, + GO)]’
(5)
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Fig. 1. Measured and computed conductances for the Microwave
Associates germanium diode MA4605B.
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Fig. 2. Variation of the first Fourier coefdckmt of (4) andtheoscillation power of
(6), with theapplied bias V~. G~=O.012 mho, diode: MA4605B.
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Fig. 3, Theoretical conversion gain curves for different
values of G~. G@=0.0 12 mho, diode: MA460SB.

where -yl = GJGo and G1 and GO are defined by (4). GL k the load

conductance at the intermediate frequency.
A numerical analysis is carried out to obtain -Y1’ and GO and the

variation of y12 is plotted as a function of applied bias voltage VB,

as shown in Fig. 2. In the same figure the oscillation power P dissi-
pated in Gf and obtained from

(6)

is also shown for comparison purposes. As seen from Fig, 2 the maxi-
mum value of P corresponds to the zero value of ~lz. At this bias
voltage, the gain expression of (5) becomes zero which means infinite
conversion loss.

Fig. 3 shows the theoretical conversion gain curves obtained from

(5) for different values of GL and for a fixed value of G.. There is no
~eed to vary both GL and G~ since (5) is symmetric ii GL and Go

Varying G. would create extra complications in the analysis since it
effects the oscillation magnitude through (6) and (3). The form of
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~ CIRCULAR OISCthese theoretical curves is the same as those obtained from the ex-

perimental self-oscillating tunnel-diode mixer [1].

CONCLUSIONS

The following points are worthwhile considering:
1) Therelatively small magnitudes of self-oscillations correspond

to large gains. This is in agreement with the results obtained for

externally applied local-oscillator tunnel-diode mixers [4].
2) In a tunnel-diode mixer with external local oscillator, both

the bias voltage and the local oscillator magnitude can be varied

independently. In the case of self-oscillating tunnel-diode mixer, the

choice of bias voltage also fixes the oscillation magnitude and hence

the infinite conversion loss condition becomes an inherent property

of the mixer.
3) Byspitable choice of GL)thecritical dependency ofgain on the

bias voltage can be minimized, However, in such an optimization
procedure the noise figure of the mixer should also be considered.
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A New Method for Calculating the Capacitance of a

Circular Disk for Microwave Integrated Circuits

T, ITOH AND R. MITTRA

Absfracf—A method for calculating the capacitance of a circular

disk on a dielectric substrate backed by a ground plsne is presented.
Hsnkel transforms and Galerkin’s method are used to derive the
expression for the capacitance. Numerical results are compared with
the experimental data and good agreement is reported.

The increasing use of integrated circuits (IC’S) at microwave

frequencies has created a great deal of interest in the theoretical and

experimental studies of microstrip lines and other similar structures.
However, most of these studies are concerned with the properties of

infinitely long transmission lines [1]. In actual microwave IC’S,
many finite-sized or lumped elements are employed to realize the

desired functional devices. Hence, the analysis of these finite-sized
elements is also important; however, to date, very little has been re-

ported on the analysis of such elements.
Among the finite elements, a rectangular microstrip was recently

analyzed by Farrar and Adams [2 ] and Itoh etal. [3]. Another typi-
cal finite element is the circular disk (see Fig. 1) for which reliable
design data are lacking. In the present short paper a new method is
presented for calculating the total capacitance of the circular disk
under the quasi-static approximation. The method is an extension of

the spectral domain technique developed in [3].
The first step is to write Poisson’s equation for the potential o in

the cylindrical coordinate

(1)

in which p is the charge distribution on the disk, and the O terms van-
ished because of the circular symmetry. Let us now introduce the
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Fk. 1. Circular disk for the microwave integrated circuit.

Hankel transform of the order zero:

~(a, z) =
f

‘+(Lz).To(ar)r dr.
o

Upon Hankel transforming (1) we obtain

G-”’) .0
7(CZ,z) = – %)6(2–d)

where

(2)

(3)

S
o

~(a) = /2(f)~&W’)Y dr
o

is the Hankel transform of the charge distribution. The general solu-
tion of (3) which satjsfies the boundary condition I$(a, O) = O and the
radiation condition @(a, + co) = O is

{

A(a) sinh az,
T(a, z) =

O<z<d

B(a) exp [–IX(Z – d)], z>d. (4)

The unknown coefficients A (a) and B(a) are determined so that the

interface conditions

;(cz, d + O)= ~(a, d – O)

&kx,~+O–e+$(+ O)=–b(a)
eo

are satisfied. Upon eliminating A and B we obtain

?%);(a) = ~i(a, d) + ?,(a, d)

where

a(a) =
1

Clw[l + 6, Coth ad]

(5)

J~j(CY,d) ‘= ‘.TO(OY)Vdf’ =g.TI(O17J)
0 a

J
.

&(a, d) ,= &v, d)J&w)r dr.
a

Equation (5) corresponds to the integral equation in the conventional

space-domain formulation where the convolution integral appears in-
stead of the product @ found in (5). Note that (5) contains two un-
knowns ~ and ~0. However, as will be shown shortly, ~0 is eliminated
in the process of solution.

Galerkin’s method is now applied to (5). As the first step toward

thk, j5(cY) is expanded in terms of the known basis functions ji(a):

where p.(r), the inverse transforms of ji (a), are chosen so that they

are zero for r > a. Substituting (6) in (5) and taking an inner product
of one of the & with (5), we have

k Kmn4 = % m=l,2, . . ..iV (7)
m=l

J

.
Km. = &(a)@&i@a da (8)

o


